民航行业标准 《航空 5G AeroMACS 地面终端测试方法》 (征求意见稿)

编制说明

一、工作简况

(一) 任务来源

《航空 5G AeroMACS 地面终端测试方法》为 2024 年标准计划外项目,标准编制周期为 12 个月。该标准由中国民用航空局空管行业管理办公室提出,牵头起草单位为上海机场(集团)有限公司。

(二) 主要起草单位和编制组成员

主要起草单位:上海机场(集团)有限公司、北京航空航天大学、中国民航科学技术研究院、广东省机场管理集团有限公司、湖北国际物流机场有限公司。

编制组成员:朱衍波、张卓剑、杨琳、沈洋、蔡开泉、沈华、郑悦锋、谭锡荆、张楠、王妙颖、宋健、单泓博、占毅、李丽桓、杨龙、李翔、叶根发、肖尧、杨鹏、李二周。

(三) 标准制定的背景、目的和意义

航空 5G AeroMACS 是将第五代移动通信技术(5G)应用于民航 AeroMACS 专用网络的新一代航空宽带通信技术,可以提供比WiMAX AeroMACS(1.0)更大的通信带宽、更快的通讯速率以及更小的通信延时。飞机驾驶舱、塔台、场面车辆及航空公司、机场运行控制部门间均可以通过航空 5G 专网准确、及时、快速地共享信息,为多主体协同运行提供坚实支撑,有力提升机场场面的运行安全与效率。2021年,民航局发布《新一代航空宽带通信技术路线图》,明确航空 5G AeroMACS 是智慧民航建设的重要设施,大力推进新一代航空宽带通信技术的行业应用,路线图基于我国 5G 通信技术的发展,从近期、中期、长期三个阶段对 5G

AeroMACS提出了明确的指导思想、总体目标,制定了详细的任务和分工。2022年,民航局发布了《航空 5G 机场场面宽带移动通信系统建设应用实施方案》,进一步统筹明确民航领域 5G AeroMACS 发展路径和重点工作,推动以 5G 为核心的新一代航空宽带通信系统协同发展和全面应用,促进民航高质量发展。 5G AeroMACS 属于民航新技术,我国民航在该领域处于领先地位,国际上欠缺相关标准规范,需要通过研究、试验、应用等一系列工作逐步建立完善 5G AeroMACS 标准体系,推广 5G AeroMACS 的实施工作。

航空 5G AeroMACS 地面终端是 5G AeroMACS 产业链关键环节,为规范航空 5G AeroMACS 地面终端的测试方法,确保航空 5G AeroMACS 地面终端满足性能、网络功能、安全、电磁兼容性等方面要求,推动航空 5G AeroMACS 地面终端规模化应用,开展此标准编制。

(四) 主要工作过程

1. 组建编制组

2024年初,成立标准编制组,制定标准编制工作计划。

2. 调研

2024年1月至4月,启动调研工作,搜集整理国内外AeroMACS 1.0终端和公网5G终端技术要求和测试方法的资料,收集5GAeroMACS相关规范文件及试点验证过程中的测试方法和数据。

3. 立项评审

2024年6月17日,中国民航科学技术研究院(以下简称"航科院")在上海组织召开标准立项评审会。会议邀请了七位具有高级职称的行业专家成立评审组。评审组听取了项目承担单位上海机场(集团)有限公司的项目汇报,与上海机场(集团)有限公司相关人员进行了技术交流和讨论,对项目的必要性、可行性、主要内容、工作计划以及项目预期成果等方面进行了评审,该项目目标明确、内容全面、方案可行。项目成果对指导航空5GAeroMACS地面终端测试具有重要的意义。评审组一致同意该项目立项。

4. 标准起草

2024年5月至2025年4月,开展标准起草工作。

- (1) 2024年5月至12月,标准编制组结合 AeroMACS1.0终端、公网5G终端、航空5G AeroMACS 地面终端试点验证情况,开展标准起草工作,完成标准初稿。
- (2) 2025年1月至3月,通过咨询业内专家,内部讨论等方式,对初稿进行多轮修改,形成《航空5G AereMACS地面终端测试方法》行业标准修订稿草案。
- (3) 2025 年 4 月邀请行业内专家对修订后的草案进行初步审核,编制小组对专家修改意见进行了落实。

5. 中期评审

2025年5月13日,航科院组织召开了标准中期评审会。会上评审专家组9人听取了标准起草单位关于标准的编制过程、技术要点和征求意见草案编写情况的汇报后,对标准全文进行了技术审查,并逐条评审,形成专家组意见6条,评审专家组一致同

意《航空 5G AeroMACS 地面终端测试方法》民航行业标准计划外项目通过技术评审。

6. 形成标准征求意见稿

2025年5月至9月,在评审专家的意见建议基础上,编制组不断修改完善标准文本,同时邀请行业内专家对修改后的标准进行审核,依据审核意见,持续进行修订完善,形成标准征求意见稿。

二、编写原则和主要内容(如技术指标、参数、公式、性能要求、试验方法、试验规则等)的编写论据(包括计算、测试、统计等数据),修订标准时应说明主要技术内容的修改情况

(一) 标准编写原则

本标准以科学研究和实践成果为依据,体现民航专用通信技术的进步和行业发展水平,所编制标准能够具体指导航空 5G AeroMACS 地面终端在总体、性能、网络功能、安全和电磁兼容性的测试方法,体现民航高质量发展要求,并与航空 5G AeroMACS 地面终端技术要求等相关标准协调一致。

(二)标准主要内容

本标准文件共包括10章正文。

第1、2、3、4章,为标准的常规性描述,包括范围、规范性引用文件、术语、定义和缩略语。

第 5、6、7、8、9、10章,对 5G AeroMACS 地面终端的测试进行了描述。内容包括测试要求、总体测试方法、性能测试方法、网络功能测试方法、安全要求测试方法和电磁兼容性测试方法。

(三)修订标准新、旧版本主要技术内容改变的说明

本标准为新制定标准。

三、是否涉及专利,涉及专利的,说明专利名称、编号及相 关信息

本标准不涉及专利。

四、主要试验或验证的分析、综述报告、技术论证、预期的 经济效益和社会效益

(一) 主要试验或验证的分析、综述报告、技术论证

在本标准中,明确了航空 5G AeroMACS 地面终端的测试环境、待测终端、网络拓扑、网络配置、测试仪表仪器,约定了测试的前提条件。同时测试内容与航空 5G AeroMACS 终端技术要求进行了逐一对照,确保技术要求在测试方法中可以得到验证。测试内容分为总体测试、性能测试、功能测试、电磁性兼容性测试,进一步明确了测试项目的具体方法。

(二) 预期的经济效益

航空 5G AeroMACS 系统的规范化与标准化建设,不仅是智慧 民航蓝图中不可或缺的基石,更是推动整个民航业全面数字化转 型的强劲引擎。这一技术的深度应用,标志着民航业正式迈入了 一个智能互联的新时代,它如同一条信息高速公路,将空管、机 场、航空公司、服务保障等关键运行环节紧密相连,构建起一个 高效协同、灵活响应的生态系统。

作为"智慧民航"的核心驱动力之一,航空 5G AeroMACS 重塑了航空通信的边界,更以其卓越的性能与安全性,为提升航空安全、优化资源配置、增强服务体验提供了前所未有的可能。直接促进了民航生产单位运营效率与经济效益的显著提升,通过促

进信息流通与资源共享,激发了民航产业链上下游的协同创新活力,为地方民航乃至整体经济的蓬勃发展注入了新的动能。

根据国际民航相关专家预测,全球 AeroMACS 地面终端数量可到百万台以上,产业价值超过百亿元,中国市场规模占比超过四分之一。此外,近年来全球各国对防跑道入侵技术和场面新业态的需求也日益增长,地面终端作为产业链关键环节,遵照本标准进行测试的终端,可以和自主研制的高级场面活动控制与引导系统、自主建设的 5G AeroMACS 网络构成整体解决方案,带动中国民航通导监设备参与国际市场。

(三) 预期的社会效益

本标准作为航空 5G AeroMACS 地面终端设备准入的基础,将带来深远的社会效益。该标准通过标准化、科学化的测试体系建设,显著增强了航空通信系统的安全性与可靠性,为航空运输提供了更加坚实的保障,直接提升了公众对航空出行的信任度,促进了社会的和谐稳定。

航空 5G AeroMACS 地面终端测试方法作为航空 5G AeroMACS 标准体系的关键组成部分,将促进了航空运输管理的智能化升级,不仅提高了机场运营效率,减少了航班延误,还通过优化资源配置,降低了能耗与排放,为构建绿色航空交通体系贡献力量。这一变化不仅提升了乘客的出行体验,也积极响应了全球可持续发展的号召。

航空 5G AeroMACS 地面终端测试方法的实施,将带来安全、高效、绿色、智能的航空交通体系,为社会发展注入新的活力,推动全球航空业迈向更加辉煌的未来。

五、采用国际标准和国外先进标准的程度以及与国际、国外 同类标准水平的对比情况

本标准不存在版权问题。

六、与有关的现行法律、行政法规、民航规章和国家标准、 行业标准的关系

本标准与国内现行法律、法规和国家标准、行业标准相一致, 无冲突。

七、重大不同意见的处理和依据

无。

八、贯彻标准的要求和措施建议(包括组织措施、技术措施、 过渡办法等)

建议本标准发布实施后,行业标准化管理单位及时组织本标准宣贯,强化标准技术内容对后续工作的指导。

九、废止现行有关标准的建议

无。

十、重要内容的解释和其他应说明的事项

无。